Correction to: Good Integers and some Applications in Coding Theory

Somphong Jitman

Abstract

In this note, the errors in the paper "Good integers and some applications in coding theory, Cryptography and Communications 10, 685-704 (2018)" by S. Jitman have been discussed as well as corrections that are practical with the remaining parts of the original paper.

Keywords: good integers
MSC2010: 11N25

1 Introduction

For fixed coprime nonzero integers a and b, a positive integer d is said to be good (with respect to a and b) if it is a divisor of $a^{k}+b^{k}$ for some integer $k \geq 1$. Denote by $G_{(a, b)}$ the set of good integers defined with respect to a and b. This concept has been introduced in [2]. A positive integer d is said to be oddly-good (with respect to a and b) if $d \mid\left(a^{k}+b^{k}\right)$ for some odd integer $k \geq 1$, and evenly-good (with respect to a and b) if $d \mid\left(a^{k}+b^{k}\right)$ for some even integer $k \geq 2$ (see [1]). Denote by $O G_{(a, b)}$ (resp., $E G_{(a, b)}$) the set of oddly-good (resp., evenly-good) integers defined with respect to a and b.

Properties of good integers have been studied in [1] and [2]. Note that some results on good integers determined in [1] are not correct. The errors have been pointed out with possible corrections in [3]. Precisely, [1, Proposition 2.1] and [1, Proposition 2.3] are erroneous caused by the following false expressions " $\operatorname{ord}_{2^{\beta}}\left(\frac{a}{b}\right)=2 \Rightarrow a b^{-1} \equiv$ $-1 \bmod 2^{\beta "}$ and " $\operatorname{ord}_{d}\left(\frac{a}{b}\right)=2 k \Rightarrow\left(a b^{-1}\right)^{k} \equiv-1 \bmod d$ " used in their proofs, where a, b and $d \geq 1$ are pairwise coprime odd integers and $\beta \geq 1$ is an integer.

[^0]In this note, corrections of [1, Proposition 2.1] and [1, Proposition 2.3] that are closed to their original statements and practical with the remaining part of [1] are discussed.

2 Results

In this section, corrections of [1, Proposition 2.1] and [1, Proposition 2.3] are given as well as their consequences.

First we note that $\operatorname{ord}_{2}(x)=1$ and $\operatorname{ord}_{2^{\beta}}(x)=2$ for all odd integers x and $\beta \geq 2$ such that $x \equiv-1 \bmod 2^{\beta}$.

A correction of [1, Proposition 2.1] is given in the following proposition.
Proposition 2.1. Let a and b be coprime odd integers and let $\beta \geq 1$ be an integer. Then the following statements are equivalents.

1) $2^{\beta} \in G_{(a, b)}$.
2) $2^{\beta} \mid(a+b)$.
3) $a b^{-1} \equiv-1 \bmod 2^{\beta}$.

Proof. To prove 1) implies 2), assume that $2^{\beta} \in G_{(a, b)}$. If $\beta=1$, then $2^{\beta} \mid(a+b)$ since $a+b$ is even. Then $2^{\beta} \mid\left(a^{k}+b^{k}\right)$ for some integer $k \geq 1$. Assume that $\beta>1$. Then $4 \mid\left(a^{k}+b^{k}\right)$. If k is even, then $a^{k} \equiv 1 \bmod 4$ and $b^{k} \equiv 1 \bmod 4$ which implies that $\left(a^{k}+b^{k}\right) \equiv 2 \bmod 4$, a contradiction. It follows that k is odd. Since $a^{k}+b^{k}=$ $(a+b)\left(\sum_{i=0}^{k-1}(-1)^{i} a^{k-1-i} b^{i}\right)$ and $\sum_{i=0}^{k-1}(-1)^{i} a^{k-1-i} b^{i}$ is odd, we have that $2^{\beta} \mid(a+b)$.

The statement 2$) \Rightarrow 1$) follows from the definition. The equivalent statement 2) $\Leftrightarrow 3)$ is obvious.

The next proposition is a correction of [1, Proposition 2.3].
Proposition 2.2. Let a, b and $d>1$ be pairwise coprime odd positive integers and let $\beta \geq 2$ be an integer. Then $2^{\beta} d \in G_{(a, b)}$ if and only if $2^{\beta} \mid(a+b)$ and $d \in G_{(a, b)}$ is such that $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right)$. In this case, $\operatorname{ord}_{2^{\beta}}\left(\frac{a}{b}\right)=2$ and $2 \| \operatorname{ord}_{2^{\beta} d}\left(\frac{a}{b}\right)$.

Proof. Assume that $2^{\beta} d \in G_{(a, b)}$. Let k be the smallest positive integer such that $2^{\beta} d \mid\left(a^{k}+b^{k}\right)$. Then $d \mid\left(a^{k}+b^{k}\right)$ and $2^{\beta} \mid\left(a^{k}+b^{k}\right)$ which implies that $d \in G_{(a, b)}$ and $\left(a b^{-1}\right)^{2 k} \equiv 1 \bmod d$. Moreover, $2^{\beta} \mid(a+b)$ and k must be odd by Proposition 2.1 and its proof. Let k^{\prime} be the smallest positive integer such that $d \mid\left(a^{k^{\prime}}+b^{k^{\prime}}\right)$. Then
$\operatorname{ord}_{d}\left(\frac{a}{b}\right)=2 k^{\prime}$. Since $\left(a b^{-1}\right)^{2 k} \equiv 1 \bmod d$, we have $k^{\prime} \mid k$. Consequently, k^{\prime} is odd and $(a+b) \mid\left(a^{k^{\prime}}+b^{k^{\prime}}\right)$. Hence, $2^{\beta} d \mid\left(a^{k^{\prime}}+b^{k^{\prime}}\right)$. By the minimality of k, we have $k=k^{\prime}$ and $d \mid\left(a^{k}+b^{k}\right)$. Consequently, $\operatorname{ord}_{d}\left(\frac{a}{b}\right)=2 k^{\prime}=2 k$. Since k is odd, $d \in G_{(a, b)}$ is such that $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right)$.

Conversely, assume that $2^{\beta} \mid(a+b)$ and $d \in G_{(a, b)}$ is such that $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right)$. Let k be the smallest positive integer such that $d \mid\left(a^{k}+b^{k}\right)$. Then $\left(a b^{-1}\right)^{k} \equiv-1 \bmod d$ which implies that $\operatorname{ord}_{d}\left(\frac{a}{b}\right)=2 k$. Since $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right), k$ must be odd. It follows that $\left(a b^{-1}\right)^{k} \equiv a b^{-1} \equiv-1 \bmod 2^{\beta}$. Since d is odd, $\left(a b^{-1}\right)^{k} \equiv-1 \bmod 2^{\beta} d$. Hence, $2^{\beta} d \mid\left(a^{k}+b^{k}\right)$ which means $2^{\beta} d \in G_{(a, b)}$ as desired.

In this case, we have $2^{\beta} \mid(a+b)$ which implies that $\operatorname{ord}_{2^{\beta}}\left(\frac{a}{b}\right)=2$. Moreover, $\operatorname{ord}_{2^{\beta} d}\left(\frac{a}{b}\right)=\operatorname{lcm}\left(\operatorname{ord}_{2^{\beta}}\left(\frac{a}{b}\right), \operatorname{ord}_{d}\left(\frac{a}{b}\right)\right)=2 k$ and k is odd. Therefore, $2 \| \operatorname{ord}_{2^{\beta} d}\left(\frac{a}{b}\right)$.

As a consequence of the above corrections, [1, Theorem 2.1] and [1, Theorem 3.1] should be rewritten as follows.

Theorem 2.3 ([1, Corrected version of Theorem 2.1]). Let a and b be coprime nonzero integers and let $\ell=2^{\beta} d$ be a positive integer such that d is odd and $\beta \geq 0$. Then one of the following statements holds.

1) If $a b$ is odd, then $\ell=2^{\beta} d \in G_{(a, b)}$ if and only if one of the following statements holds.
(a) $\beta \in\{0,1\}$ and $d=1$.
(b) $\beta \in\{0,1\}, d \geq 3$ and there exists $s \geq 1$ such that $2^{s} \left\lvert\, \operatorname{ord}_{p}\left(\frac{a}{b}\right)\right.$ for every prime p dividing d.
(c) $\beta \geq 2, d=1$ and $2^{\beta} \mid(a+b)$.
(d) $\beta \geq 2, d \geq 3,2^{\beta} \mid(a+b)$ and $d \in G_{(a, b)}$ is such that $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right)$.
2) If $a b$ is even, then $\ell=2^{\beta} d \in G_{(a, b)}$ if and only if one of the following statements holds.
(a) $\beta=0$ and $d=1$.
(b) $\beta=0, d \geq 3$, and there exists $s \geq 1$ such that $2^{s} \| \operatorname{ord}_{p}\left(\frac{a}{b}\right)$ for every prime p dividing d.

Theorem 2.4 ([1, Corrrected Version of Theorem 3.1]). Let a and b be coprime nonzero integers and let $\ell=2^{\beta} d$ be an integer such that d is odd and $\beta \geq 0$. Then one of the following statements holds.

1) If $a b$ is odd, then $\ell=2^{\beta} d \in O G_{(a, b)}$ if and only if one of the following statements holds.
(a) $\beta \in\{0,1\}$ and $d=1$.
(b) $\beta \in\{0,1\}, d \geq 3$, and $2 \| \operatorname{ord}_{p}\left(\frac{a}{b}\right)$ for every prime p dividing d.
(c) $\beta \geq 2, d=1$ and $2^{\beta} \mid(a+b)$.
(d) $\beta \geq 2, d \geq 3,2^{\beta} \mid(a+b)$ and $d \in G_{(a, b)}$ is such that $2 \| \operatorname{ord}_{d}\left(\frac{a}{b}\right)$.
2) If ab is even, then $\ell=2^{\beta} d \in O G_{(a, b)}$ if and only if one of the following statements holds.
(a) $\beta=0$ and $d=1$.
(b) $\beta=0, d \geq 3$, and $2 \| \operatorname{ord}_{p}\left(\frac{a}{b}\right)$ for every prime p dividing d.

Later in [1], [1, Proposition 2.1] and [1, Proposition 2.3] have been applied in the proof of [1, Proposition 3.1]. We have checked and certified that [1, Proposition 3.1] is correct. However, in the proof of [1, Proposition 3.1], Proposition 2.1 and Proposition 2.2 in this note need to be applied instead.

Finally, we note that the above corrections do not affect any other result given in the paper [1] are still practical with the applications in [1, Section 4].

Acknowledgements

The author would like to thank Professor Madhu Raka [3] and an anonymous researcher for pointed out the errors.

References

[1] Jitman, S.: Good integers and some applications in coding theory, Cryptogr. Commun. 10, 685-704 (2018).
[2] Moree, P.: On the divisors of $a^{k}+b^{k}$. Acta Arithmetica LXXX, 197-212 (1997).
[3] Raka, M.: Good integers : A note on results of Jitman and Prugsapitak, (2018) http://128.84.21.199/abs/1804.01916.

[^0]: S. Jitman is with the Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand (email: sjitman@gmail.com).

